
OAS는 OpenAPI Specification의 약자로, "OpenAPI 명세서" 의미

OpenAPI 또는 OAS(OpenAPI Specification)로 불리며, RESTful API를 정해진 표준 규칙에 따라 API Spec을
json 혹은 yaml 로 표현하는 방식 , 즉 "Restful API 디자인의 정의 방법의 표준"

예

API 설계 예제 YAML

OAS로 API 설계

openapi: 3.0.3

info:

 title: Sample Ecommerce App

 description: >

 'This is a ***sample ecommerce app API***. You can find out more about Swagger

at swagger.io.

 Description supports markdown markup. For example, you can use the `inline

code` using back ticks.'

 termsOfService: https://github.com/PacktPublishing/Modern-API-Development-with-

Spring-6-and-Spring-Boot-3/blob/main/LICENSE

 contact:

 name: Packt Support

 url: https://www.packt.com

 email: support@packtpub.com

 license:

 name: MIT

 url: https://github.com/PacktPublishing/Modern-API-Development-with-Spring-6-

and-Spring-Boot-3/blob/main/LICENSE

 version: 1.0.0

externalDocs:

 description: Any document link you want to generate along with API.

 url: http://swagger.io

servers:

 - url: https://ecommerce.swagger.io/v2

tags:

 - name: cart

 description: Everything about cart

 externalDocs:

 description: Find out more (extra document link)

 url: http://swagger.io

 - name: order

 description: Operation about orders

 - name: user

 description: Operations about users

 - name: customer

 description: Operations about user's persona customer

 - name: address

 description: Operations about user's address

 - name: payment

 description: Operations about payments

 - name: shipping

 description: Operations about shippings

 - name: product

 description: Operations about products

 - name: card

 description: card operation

paths:

 /api/v1/carts/{customerId}:

 get:

 tags:

 - cart

 summary: Returns the shopping cart

 description: Returns the shopping cart of given customer

 operationId: getCartByCustomerId

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: successful operation

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Cart'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Cart'

 404:

 description: Given customer ID doesn't exist

 content: {}

 delete:

 tags:

 - cart

 summary: Delete the shopping cart

 description: Deletes the shopping cart of given customer

 operationId: deleteCart

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 204:

 description: successful operation

 404:

 description: Given customer ID doesn't exist

 content: {}

 /api/v1/carts/{customerId}/items:

 get:

 tags:

 - cart

 summary: Returns the list of products in user's shopping cart

 description: Returns the items in shopping cart of given customer

 operationId: getCartItemsByCustomerId

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: successful operation

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 404:

 description: Given customer ID doesn't exist

 content: {}

 post:

 tags:

 - cart

 summary: Adds an item in shopping cart

 description: Adds an item to the shopping cart if it doesn't already exist,

or increment quantity by the specified number of items if it does.

 operationId: addCartItemsByCustomerId

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 requestBody:

 description: Item object

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 $ref: '#/components/schemas/Item'

 responses:

 201:

 description: Item added successfully

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 404:

 description: Given customer ID doesn't exist

 content: {}

 put:

 tags:

 - cart

 summary: Replace/add an item in shopping cart

 description: Adds an item to the shopping cart if it doesn't already exist,

or replace with given item if it does.

 operationId: addOrReplaceItemsByCustomerId

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 requestBody:

 description: Item object

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 $ref: '#/components/schemas/Item'

 responses:

 201:

 description: Item added successfully

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 404:

 description: Given customer ID doesn't exist

 content: {}

 /api/v1/carts/{customerId}/items/{itemId}:

 get:

 tags:

 - cart

 summary: Returns given item from user's shopping cart

 description: Returns given item from shopping cart of given customer

 operationId: getCartItemsByItemId

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 - name: itemId

 in: path

 description: Item (product) Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: If item exists in cart

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Item'

 404:

 description: Given item (product) ID doesn't exist

 content: {}

 delete:

 tags:

 - cart

 summary: Delete the item from shopping cart

 description: Deletes the item from shopping cart of given customer

 operationId: deleteItemFromCart

 parameters:

 - name: customerId

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 - name: itemId

 in: path

 description: Item (product) Identifier

 required: true

 schema:

 type: string

 responses:

 202:

 description: Accepts the request, regardless of whether the specified

item exists in the cart or not.

 /api/v1/orders:

 post:

 tags:

 - order

 summary: Creates a new order for the given order request

 description: Creates a new order for the given order request.

 operationId: addOrder

 requestBody:

 description: New Order Request object

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/NewOrder'

 application/json:

 schema:

 $ref: '#/components/schemas/NewOrder'

 responses:

 201:

 description: Order added successfully

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Order'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Order'

 406:

 description: If payment is not authorized.

 content: {}

 get:

 tags:

 - order

 summary: Returns the orders of given user

 description: Returns orders of given user

 operationId: getOrdersByCustomerId

 parameters:

 - name: customerId

 in: query

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: If order exists.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Order'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Order'

 404:

 description: Order doesn't exist for given user.

 content: {}

 /api/v1/orders/{id}:

 get:

 tags:

 - order

 summary: Returns the order of given order ID

 description: Returns orders of given order ID

 operationId: getOrdersByOrderId

 parameters:

 - name: id

 in: path

 description: Order Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: If order exists.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Order'

 application/json:

 schema:

 $ref: '#/components/schemas/Order'

 404:

 description: Order doesn't exist for given user.

 content: {}

 /api/v1/customers:

 get:

 tags:

 - customer

 summary: Returns all customers

 description: Returns all customers, or empty collection if no use found

 operationId: getAllCustomers

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/User'

 /api/v1/customers/{id}:

 get:

 tags:

 - customer

 summary: Returns a customer

 description: Returns a customers identifiable by given ID

 operationId: getCustomerById

 parameters:

 - name: id

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/User'

 application/json:

 schema:

 $ref: '#/components/schemas/User'

 delete:

 tags:

 - customer

 summary: Deletes the customer

 description: Deletes the customer identifiable by given ID

 operationId: deleteCustomerById

 parameters:

 - name: id

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 202:

 description: Request accepted, returns this status even if user does not

exist

 content: {}

 /api/v1/customers/{id}/cards:

 get:

 tags:

 - customer

 summary: Returns all customer's cards

 description: Returns all customer's cards based on given customer ID

 operationId: getCardsByCustomerId

 parameters:

 - name: id

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Card'

 application/json:

 schema:

 $ref: '#/components/schemas/Card'

 /api/v1/customers/{id}/addresses:

 get:

 tags:

 - customer

 summary: Returns all customer's addresses

 description: Returns all customer's addresses based on given customer ID

 operationId: getAddressesByCustomerId

 parameters:

 - name: id

 in: path

 description: Customer Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Address'

 application/json:

 schema:

 $ref: '#/components/schemas/Address'

 /api/v1/addresses:

 get:

 tags:

 - address

 summary: Returns all user's addresses

 description: Returns all user's addresses, else empty collection

 operationId: getAllAddresses

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Address'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Address'

 post:

 tags:

 - address

 summary: Creates a new user addresses

 description: Creates a new user addresses. Does nothing if address already

exists.

 operationId: createAddress

 requestBody:

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/AddAddressReq'

 application/json:

 schema:

 $ref: '#/components/schemas/AddAddressReq'

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Address'

 application/json:

 schema:

 $ref: '#/components/schemas/Address'

 /api/v1/addresses/{id}:

 get:

 tags:

 - address

 summary: Returns user's address

 description: Returns user's address based on given address ID.

 operationId: getAddressesById

 parameters:

 - name: id

 in: path

 description: address Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Address'

 application/json:

 schema:

 $ref: '#/components/schemas/Address'

 delete:

 tags:

 - address

 summary: Deletes user's address

 description: Deletes user's address based on given address ID.

 operationId: deleteAddressesById

 parameters:

 - name: id

 in: path

 description: address Identifier

 required: true

 schema:

 type: string

 responses:

 202:

 description: Accepts the deletion request and perform deletion. If ID

does not exist, does nothing.

 content: {}

 /api/v1/cards:

 get:

 tags:

 - card

 summary: Returns all user's cards

 description: Returns all user's cards, else empty collection

 operationId: getAllCards

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Card'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Card'

 post:

 tags:

 - card

 summary: Creates a new card

 description: Creates a new card. or replaces the existing one

 operationId: registerCard

 requestBody:

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/AddCardReq'

 application/json:

 schema:

 $ref: '#/components/schemas/AddCardReq'

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Card'

 application/json:

 schema:

 $ref: '#/components/schemas/Card'

 /api/v1/cards/{id}:

 get:

 tags:

 - card

 summary: Returns user's card

 description: Returns user's card based on given card ID.

 operationId: getCardById

 parameters:

 - name: id

 in: path

 description: card Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Card'

 application/json:

 schema:

 $ref: '#/components/schemas/Card'

 delete:

 tags:

 - card

 summary: Deletes card's address

 description: Deletes card's address based on given card ID.

 operationId: deleteCardById

 parameters:

 - name: id

 in: path

 description: card Identifier

 required: true

 schema:

 type: string

 responses:

 202:

 description: Accepts the deletion request and perform deletion. If ID

does not exist, does nothing.

 content: {}

 /api/v1/payments:

 post:

 tags:

 - payment

 summary: Authorize a payment request

 description: Authorize a payment request.

 operationId: authorize

 requestBody:

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/PaymentReq'

 application/json:

 schema:

 $ref: '#/components/schemas/PaymentReq'

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Authorization'

 application/json:

 schema:

 $ref: '#/components/schemas/Authorization'

 get:

 tags:

 - payment

 summary: Returns the payment authorization

 description: Return the payment authorization for the specified order

 operationId: getOrdersPaymentAuthorization

 parameters:

 - name: id

 in: query

 description: Order Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Authorization'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Authorization'

 /api/v1/shipping:

 post:

 tags:

 - shipping

 summary: Ship the specified shipping request

 description: Ship the specified shipping request

 operationId: shipOrder

 requestBody:

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/ShippingReq'

 application/json:

 schema:

 $ref: '#/components/schemas/ShippingReq'

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Authorization'

 application/json:

 schema:

 $ref: '#/components/schemas/Authorization'

 get:

 tags:

 - shipping

 summary: Return the Shipment

 description: Return the Shipment for the specified order

 operationId: getShipmentByOrderId

 parameters:

 - name: id

 in: query

 description: Order Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Shipment'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Shipment'

 /api/v1/products:

 get:

 tags:

 - product

 summary: Returns all the matched products

 description: Returns the products that matches the given query criteria

 operationId: queryProducts

 parameters:

 - name: tag

 in: query

 description: Product tag

 required: false

 schema:

 type: string

 - name: name

 in: query

 description: Product name

 required: false

 schema:

 type: string

 - name: page

 in: query

 description: Query page number

 required: false

 schema:

 type: integer

 format: int32

 default: 1

 - name: size

 in: query

 description: Query page size

 required: false

 schema:

 type: integer

 format: int32

 default: 10

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Product'

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/Product'

 /api/v1/products/{id}:

 get:

 tags:

 - product

 summary: Returns a product

 description: Returns the product that matches the given product ID

 operationId: getProduct

 parameters:

 - name: id

 in: path

 description: Product Identifier

 required: true

 schema:

 type: string

 responses:

 200:

 description: For successful fetch.

 content:

 application/xml:

 schema:

 $ref: '#/components/schemas/Product'

 application/json:

 schema:

 $ref: '#/components/schemas/Product'

components:

 schemas:

 Cart:

 description: Shopping Cart of the user

 type: object

 properties:

 customerId:

 description: Id of the customer who possesses the cart

 type: string

 items:

 description: Collection of items in cart.

 type: array

 items:

 $ref: '#/components/schemas/Item'

 Item:

 description: Items in shopping cart

 type: object

 properties:

 id:

 description: Item Identifier

 type: string

 quantity:

 description: The item quantity

 type: integer

 format: int32

 unitPrice:

 description: The item's price per unit

 type: number

 format: double

 Order:

 description: Represents an order

 type: object

 properties:

 id:

 description: Order identifier

 type: string

 customer:

 $ref: '#/components/schemas/User'

 address:

 $ref: '#/components/schemas/Address'

 card:

 $ref: '#/components/schemas/Card'

 date:

 description: Order's data and time details

 type: string

 format: date-time

 items:

 description: Collection of order items.

 type: array

 items:

 $ref: '#/components/schemas/Item'

 total:

 description: Order total

 type: number

 format: double

 payment:

 $ref: '#/components/schemas/Payment'

 shipment:

 $ref: '#/components/schemas/Shipment'

 status:

 description: Order Status

 type: string

 enum:

 - CREATED

 - PAID

 - SHIPPED

 - PAYMENT_FAILED

 - SHIPMENT_FAILED

 - COMPLETED

 xml:

 name: Order

 AddAddressReq:

 allOf:

 - $ref: '#/components/schemas/Address'

 - type: object

 properties:

 userId:

 type: string

 xml:

 name: AddAddressReq

 Address:

 type: object

 properties:

 number:

 description: house of flat number

 type: string

 residency:

 description: Socieity or building name

 type: string

 street:

 description: street name

 type: string

 city:

 description: city name

 type: string

 state:

 description: state name

 type: string

 country:

 description: country name

 type: string

 pincode:

 description: postal code

 type: string

 xml:

 name: Address

 Card:

 type: object

 properties:

 cardNumber:

 description: Card Number

 type: string

 expires:

 description: Expiration date

 type: string

 ccv:

 description: CCV code

 type: string

 xml:

 name: Card

 AddCardReq:

 description: Request object for new card registration.

 allOf:

 - $ref: '#/components/schemas/Card'

 - type: object

 properties:

 userId:

 type: object

 xml:

 name: AddCardReq

 Payment:

 type: object

 properties:

 authorized:

 description: Flag that specified whether payment is authorized or not

 type: boolean

 message:

 description: Approval or rejection message

 type: string

 xml:

 name: Payment

 Shipment:

 type: object

 properties:

 orderId:

 description: Order Identifier

 type: string

 carrier:

 description: Shipping Carrier

 type: string

 trackingNumber:

 description: Shipping Tracking Number

 type: string

 estDeliveryDate:

 description: Estimated Delivery Date

 type: string

 format: date

 xml:

 name: Shipment

 ShippingReq:

 description: Contains information required for Shipping request

 type: object

 properties:

 orderId:

 description: Order Identifier

 type: string

 address:

 $ref: '#/components/schemas/Address'

 itemCount:

 description: The number of items in the order

 type: integer

 format: int32

 xml:

 name: ShippingReq

 User:

 type: object

 properties:

 id:

 type: integer

 format: int64

 username:

 type: string

 firstName:

 type: string

 lastName:

 type: string

 email:

 type: string

 password:

 type: string

 phone:

 type: string

 userStatus:

 type: integer

 description: User Status

 format: int32

 xml:

 name: User

 NewOrder:

 description: Contains the new order request information

 type: object

 properties:

 customer:

 #description: URI that should be used to fetch the customer

 $ref: '#/components/schemas/URI'

 address:

 #description: URI that should be used to fetch the address

 $ref: '#/components/schemas/URI'

 card:

 #description: URI that should be used to fetch the payment card

 $ref: '#/components/schemas/URI'

 items:

 #description: URI that should be used to fetch the items from shopping

cart

 $ref: '#/components/schemas/URI'

 xml:

 name: NewOrder

 URI:

 type: object

 xml:

 name: URI

 Authorization:

 type: object

 properties:

 orderId:

 description: Order Identification

 type: string

 time:

 description: Timestamp when this authorization was created

 type: string

 format: date-time

 authorized:

 description: Flat that specify whether the payment is authorized

 type: boolean

 message:

 description: Approavl or rejection message

 type: string

 error:

 description: Processing error description, if any

 type: string

 xml:

 name: Authorization

 PaymentReq:

 description: Contains the payment request information

 type: object

 properties:

 orderId:

 description: Order Identifier

 type: string

 customer:

 $ref: '#/components/schemas/CustomerInfoOnCard'

 address:

 $ref: '#/components/schemas/Address'

 card:

 $ref: '#/components/schemas/Card'

 amount:

 description: Payment amount

 type: number

 format: double

 xml:

 name: PaymentReq

https://editor.swagger.io/ 사이트를 통하여 확인

 CustomerInfoOnCard:

 description: Customer information required for payment processing

 type: object

 properties:

 firstName:

 description: Customer first name

 type: string

 lastName:

 description: Customer last name

 type: string

 xml:

 name: CustomerInfoOnCard

 Product:

 description: Product information

 type: object

 properties:

 id:

 description: Product identifier

 type: string

 name:

 description: Product Name

 type: string

 description:

 description: Prodcut's description

 type: string

 imageUrl:

 description: Product image's URL

 type: string

 price:

 description: Product price

 type: number

 format: double

 count:

 description: Product count

 type: integer

 format: int32

 tag:

 description: Tags associated with the product

 type: array

 uniqueItems: true

 items:

 type: string

https://editor.swagger.io/

Revision #5
Created 2 February 2025 12:30:26 by Admin
Updated 2 February 2025 12:38:52 by Admin

http://web.joang.com:8083/uploads/images/gallery/2025-02/image.png
http://web.joang.com:8083/uploads/images/gallery/2025-02/image.png

	OAS로 API 설계

